

Abstract — Increased designers' interest in digital system

design using hardware description languages has resulted in a
huge data set of open source, available on the Web. Difficulties
in discovering specific component introduce the need of
automation in the process of search and reuse of already existing
components. Despite the interface, a very important part required
for a complete automation is the software analysis of the
components' inner architecture. Applying the Semantic Web
methodologies and using our existing hardware description
ontology, we propose extension that will enable a semantic
annotation of the inner architecture and will significantly
improve the tools for automatic search and system composition
of existing components. The ontology is published and can be
used as a model for a standardized annotation, in order to
increase the availability of the existing components and to
provide easier reuse in novel designs. The concept is also
applicable inside a company, to accelerate the retrieval through
the local repositories of components.

Keywords — architecture, design reuse, linked data, ontology,
system on chip.

I. INTRODUCTION
Hardware description languages (HDLs) are mostly

used during the chip production process [1][2][3], but
recently many programmable chips are embedded in
production version of systems [4], as peripheral data
adapters or configured as co-processors that distribute the
processing power and reduce the load of the central
processor [5][6]. This new approach explores a new era
for the higher-level programmers to put their own logic in
the programmable chip, getting them much closer to the
HDL perspective, which they found very complex to do it
from scratch.

We are also aware that a large bundle of HDL code is
already published to many public web repositories. There
are many web portals [7] containing projects available
under open licenses (GPL, Apache, etc.). Although portals
offer a basic classification of projects, however, finding a
specific component is still very difficult and slow. Portals
have no possibility for flexible search (filter by ports, type
of component and so on.).

Reasons for the lack of electronic design automation
tools for sharing and reusing the HDL code may be
identified in the problem complexity, which mainly arises
from the point where a software tool should determine the
inner architecture of an HDL component.

Applying the main idea of the Semantic Web [7] [8], we
explore a new approach towards a more granular (deeper)
annotation of the HDL code/components and a higher-
level of semantic knowledge [9] retrieved from it.
Hardware description language has a certain structure, so
it is possible to make automatic semantic annotation using

ontology and software that will generate semantic
resources for digital circuits.

Identifying the possibility of applying Semantic Web
tools for the design of digital systems [10], we have
implemented an early version of the HDL IP Cores system
[11]. It performs automatic semantic annotation only for
the interface of the components. The system consists of a
web application and client plug-in [11] for Eclipse. Web
application contains a Web robot that searches and
downloads HDL components from the web and then each
component passes through a process of automatic
semantic annotation. Generated meta-data is stored in a
semantic database (repository; storage). The system
performs deeper analysis and mutual comparison of
components and enables their ranking according to
similarity and compatibility with a particular component.
Client plug-in provides all functionalities of the system,
directly into the designer's native development
environment.

HDL IP Cores so far provide the automation in data
collection and search functionality, but still there is a lack
of deeper understanding of the architecture’s type, which
is crucial for any advanced search and component
composition. Solving this problem, we have created a new
module that will recursively annotate the instantiated
components down to the level of basic logical blocks and
thus retrieve the logical function of a given architecture.
When available, the Boolean expression for a given
architecture will be another property for component’s
matching and similarity determination process, leading to
an improved EDA tool for sharing and reuse of existing
HDL code.

II. RELATED WORK
Semantic analysis of the logical circuit is extremely

important in simulators and most of them provide many
advanced functionalities. Among them, there is the
working environment (desktop) Xilinx ISE with built in
simulator ISim [12], which allows very precise and exact
time execution of simulations, generating multiple ways of
simulation (manual, graphically, through the terminal) and
a range of formats in which you can save the result of the
simulation. The simulator of Cadence [13] allows the
verification, according to the well-known open
methodologies OVM (en. "Open Verification
Methodology") and UVM (en."Unified Verification
Methodology"), enables fast and easy integration with
various verification processes, as well as data level
simulation (RTL), simulation of behavior, simulation with
reduced consumption and etc. Some simulators [14][16]
allow automated generation of test environments, using

Improving HDL Higher Level Logical Analysis
Using Boolean Function Feature

Vladimir Zdraveski, Andrej Dimitrovski, Dimitar Trajanov

ready generic libraries, which significantly accelerates the
components testing process.

HADES [18] simulator is commonly associated with the
academic environment and is considered as a tool for
beginners. The capabilities of HADES [18] are quite open,
as it is modular and provides an open application
programming interface (API) in Java, which is a very
good opportunity to exploit its internal logic for semantic
execution of simulations. Additionally, it contains a
module for integration with VHDL.

What is important to note is that simulators are
developed primarily in order to provide time accuracy and
in the precise execution of the given models than in the
direction of automatic determination of the type of
components and/or automatic composition and reuse
systems. However, some of their functionalities is possible
to be used to improve the semantic annotation of
components architecture [11].

III. BOOLEAN FUNCTION RETRIEVAL PROCESS
Automatic interface annotation of components allows a

low level of semantic analysis. In order to enable fully
automatic search and automatic composition of systems, a
software must consider the internal architecture of the
components.

The logical function retrieval process can be separated
into two phases. The first phase is the automatic semantic
annotation of the internal architecture, while the second
phase is exploiting the obtained semantic resources into an
unambiguous logical (Boolean) function, which describes
the architecture. The two phases are actually
interconnected so that the first phase is the tool for the
second phase that defines the result.

In our case the first phase is done by the annotation
module of the HDL IP Cores system and the internal
architecture of components is modeled as interlinked
instances of simpler architectures. This methodology of
developing new architectures has been accepted in the
paradigm of structured representation of architecture
within the hardware description languages (HDL), such as
VHDL.

The HDL IP Cores annotator is based on ontology [12]

which represents a semantic structure of hardware. In the
ontology we provide the necessary classes and relations
for the full annotation of architecture which continues to
be the main tool for semantic search, comparison and
simulation of multiple digital components that are found
and distributed all over the web. The annotator will also
provide the architecture type (such as Gate, Multiplexer,
Coder and etc.).

Fig 1: Annotation of logical function

The second phase will extract the logical function using

semantic resources (RDF) which architecture is annotated
with. The process of extracting the logical function of the
architecture defined in VHDL is illustrated in Fig. 1.
Architecture has an interface with two inputs (X and Y)
and one output (Z). It contains an instance of "AND"-gate
("U_ANDGATE2") and an instance of a logical inverter
("U_NOTGATE1"), mutually interconnected with a signal
"C". The part of the code that is instantiating the
components are shown in Fig. 1, while the full content of
the file is displayed in Appendix.

The final goal is to obtain the logical function of the
output port "Z", i.e. to find the logical functions for all
output ports of the architecture. The proposed algorithm
for the logical function determination of the output port
aims to find the input signals that function depends on,
connecting recursively the inner instances and associated
signals. The result of the algorithm is the architecture's
logical function in Prolog syntax. The algorithm starts
from each output port and is recursively finds component
instances and its inputs, until the architecture inputs are
found, Fig. 2.

The architecture description in the form of a logical
function will be a good base to improve the algorithms
and systems for automatic classification and composition
of components, since it will allow unambiguous
comparison of two architectures, according to the logical
search function and appropriate ranking results according
to mutual similarity and compatibility.

Fig. 2. Algorithm's flowchart. The algorithms are called for each output port (a) and for each output recursively finds component
instances and its inputs, until the architecture inputs are found (b).

Fig. 3. Syntax abstraction layer. The VHDL codes of both
components are different, but the Boolean functions are equal.

Thus, a level of syntax abstraction is introduced, as
shown in Fig. 3, and different HDL IP Cores (even in
different hardware description languages) may be
compared and matched.

As already noted, the proposed algorithm works only
for combinational circuits, whose architectures are
described by structural paradigm. In case when using
processes (functions) for definning the architecture of
systems, the procedure for determining the logical
function of architecture is significantly more complicated
because the process would have to be modeled as a black
box with a custom interface, and then to determine the
type of architecture.

This procedure, is not possible without automatic
execution of the simulation, except in the simplest
scenarios. The procedure is also difficult to perform for
sequential logic circuits, even the use of the simulator can
not always be expected to lead to an unambiguous
determination of architecture.

From the previous elaboration, the process
determination of the logical function of combinational
digital circuits described in hardware description
languages is obvious that as the output receives the logical
function output port "Z", from which could be easily
obtained a mathematical function of the output "Z". That
is equal to the negation of the product of inputs "x" and
"y". This operation certainly belongs to the class of
reverse engineering processes, since from an existing
HDL code it obtains the mathematical function
(expression), which might be used, elaborated, analyzed in
different directions.

I. FUTURE WORK
This paper illustrates the process of obtaining a logical

function for combinational logical circuits described with
structural paradigm, which is the first step in automatic
semantic annotation of the internal architecture of digital
systems.

Further step is to expand the procedure in order to cover
the logical circuits defined by processes (functions). For
this purpose, we will use the programming interface of the
simulator HADES. Additionally, there is provided a
library with classified components (gates, multiplexers,
counters, etc.), which would be a good basis for algorithm
training and automatic generation of rules for determining
the architecture type of the new components.

Afterwards, unambiguous or using heuristic algorithms
would be necessary to describe the architectures of
complex sequential circuits and digital systems. This
concept can encompass the most of the components
available today and provide advanced functionalities
within the HDL IP Cores system.

APPENDIX
library ieee;
use ieee.std_logic_1164.all;

entity NANDGATE2 is
 port(
 x : in STD_LOGIC;
 y : in STD_LOGIC;
 z : out STD_LOGIC
);
end NANDGATE2;

architecture NANDGATE2 of NANDGATE2 is

signal c, d: std_logic;
 component NOTGATE1
 port(
 n_in : in STD_LOGIC;
 n_out : out STD_LOGIC
);
 end component;

 component ANDGATE2
 port(
 a_in1, a_in2 : in STD_LOGIC;
 a_out : out STD_LOGIC
);
 end component;

begin
 N0: ANDGATE2
 port map(x, y, c);
 N1: NOTGATE1
 port map(c, z);
end NANDGATE2;

ACKNOWLEDGEMENT

The work in this paper was partially financed by the
Faculty of Computer Science and Engineering, at the "Ss.
Cyril and Methodius" University in Skopje.

REFERENCES
[1] G. Martin and G. Smith, “High-level synthesis: Past,

present, and future,” Design Test of Computers, IEEE, vol.
26, no. 4, pp. 18–25, 2009.

[2] H. Dibowski, J. Ploennigs, and K. Kabitzsch, “Automated
design of building automation systems,” Industrial
Electronics, IEEE Transactions on, vol. 57, no. 11, pp.
3606–3613, 2010.

[3] J. Teich, “Hardware/software codesign: The past, the
present, and predicting the future,” Proceedings of the
IEEE, vol. 100, no. Special Centennial Issue, pp. 1411–
1430, 2012.

[4] W. Silva, E. Bezerra, M. Winterholer, and D. Lettnin,
“Automatic property generation for formal verification
applied to hdl-based design of an on-board computer for
space applications,” in Test Workshop (LATW), 2013 14th
Latin American, pp. 1–6, 2013.

[5] G. De Micheli, “An outlook on design technologies for
future integrated systems,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol.
28, no. 6, pp. 777–790, 2009.

[6] S. Hansen, D. Koch, and J. Torresen, “Simulation
framework for cycle-accurate rtl modeling of partial run-
time reconfiguration in vhdl,” in Re-configurable and
Communication-Centric Systems-on-Chip (ReCoSoC),
2013 8th International Workshop on, pp. 1–8, 2013.

[7] Open Cores, http://opencores.org;
[8] T. Berners-Lee, J. Hendler, O. Lassila, et al., “The semantic

web,” Scientific american, 2001.
[9] T. Berners-Lee and N. Shadbolt, “Theres gold to be mined

from all our data,” The Times, 2011.
[10] T. Berners-Lee, “Long live the web,” Scientific American,

Dec. 2010.
[11] HDL IP Cores, http://hdlipcores.finki.ukim.mk
[12] Eclipse plug-in, http://hdlipcores.finki.ukim.mk/plugin
[13] Xilinx ISE Simulator (Isim),

http://www.xilinx.com/tools/isim.htm
[14] Cadence's Enterprise Simulator, http://www.cadence.com
[15] V. Zdraveski, M. Jovanovik, R. Stojanov, and D. Trajanov,

“HDL IP Cores search engine based on semantic web
technologies,” ICT Innovations 2010, Communications in
Computer and Information Science, vol. 83, no. 2, pp. 306 –
315, 2011.

[16] Verissimo System Verilog Test bench Linter,
http://www.dvteclipse.com/Verissimo_SystemVerilog_Test
bench_Linter.html

[17] VCS’ Native Test bench (NTB),
http://www.synopsys.com/Tools/Verification/FunctionalVer
ification

[18] HADES,
http://tams-www.informatik.uni-hamburg.de/applets/hades

[19] V. Zdraveski, A. Dimitrovski, D. Trajanov. ”HDL IP Cores
System as an Online Testbench Provider”. Small Systems
Simulation Symposium, Volume: 5th, Nis, Serbia, February
2014.

[20] V. Zdraveski, M. Jovanovik, R. Stojanov, D. Trajanov.
“HDL IP Cores Searh Engine Based on Semantic Web
Technologies”.

http://opencores.org/
http://hdlipcores.finki.ukim.mk/
http://hdlipcores.finki.ukim.mk/plugin
http://www.xilinx.com/tools/isim.htm
http://www.dvteclipse.com/Verissimo_SystemVerilog_Testbench_Linter.html
http://www.dvteclipse.com/Verissimo_SystemVerilog_Testbench_Linter.html
http://www.synopsys.com/Tools/Verification/FunctionalVerification
http://www.synopsys.com/Tools/Verification/FunctionalVerification
http://tams-www.informatik.uni-hamburg.de/applets/hades

	I. Introduction
	II. Related Work
	III. Boolean function retrieval process
	I. Future work
	Appendix
	References

